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Abstract—Frequent episode mining is a popular framework
for discovering sequential patterns from sequence data. Previous
studies on this topic usually process data offline in a batch
mode. However, for fast-growing sequence data, old episodes
may become obsolete while new useful episodes keep emerging.
More importantly, in time-critical applications we need a fast
solution to discovering the latest frequent episodes from growing
data. To this end, we formulate the problem of Online Frequent
Episode Mining (OFEM). By introducing the concept of last
episode occurrence within a time window, our solution can detect
new minimal episode occurrences efficiently, based on which all
recent frequent episodes can be discovered directly. Additionally,
a trie-based data structure, episode trie, is developed to store
minimal episode occurrences in a compact way. We also formally
prove the soundness and completeness of our solution and analyze
its time as well as space complexity. Experiment results of both
online and offline FEM on real data sets show the superiority of
our solution.

I. I NTRODUCTION

Frequent episode mining (FEM) techniques are broadly
conducted to analyze data sequences in the domains of t-
elecommunication [29], [30], manufacturing [20], [21], fi-
nance [33], [18], biology [5], [18], system log analysis [44],
[18], and news analysis [3]. An episode (also known asserial
episode) is usually defined as a totally ordered set of events,
and the frequency of an episode is the measure of how often it
occurs in a sequence. FEM aims at identifying all the frequent
episodes whose frequencies are larger than a user-specified
threshold.

There are many ways to define the frequency of an episode.
Existing measures include window-based frequency [30], [33],
minimal occurrence [29], [41], [18], [27], non-overlapped
occurence [22], [1], [44], non-interleaved occurrence [19] and
total frequency [1]. Since minimal occurrence can capture
the most intense correlation between events, we adopt this
frequency measure for episode mining.

Previous studies on FEM mostly process dataoffline in a
batch mode. Usually, masses of historical data are provided,
and the mining process may last for hours or even days.
Two characteristics make most existing FEM solutions time-
consuming: 1) The anti-monotonicity property may fail to
hold for episode frequency [2]. For instance, the frequency
of a sub-episode may be less than that of the super-episode if
minimal occurrenceis used to measure the episode frequency.

2) Testing whether an episode occurs in a sequence is an NP-
complete problem [38].

In this paper, we studyonline frequent episode mining
where the sequence of events continuously grows. In such
a scenario, old episodes may become obsolete while newly-
emerging episodes may become valuable. More importantly,
for time-critical applications we need efficient methods to
find recent, frequent episodes from the growing sequence.
This online mining problem is motivated by some real-world
applications, and we describe two of such applications below.

The first application is High Frequency Trading (HFT) in
quantitative finance. HFT is a type of algorithmic trading that
uses sophisticated models to rapidly trade securities [14]. After
transforming price and volume series into a sequence of events,
episode mining can be applied in guiding trading decisions.It
is also worth emphasizing that data-processing speed and the
ability of adapting to market variations are key factors to the
success of HFT. A recent report shows that a high-frequency
trader holds stocks for only22 seconds in average [9] since
only the swiftest HFT operations can benefit from existing
opportunities [23]. Therefore, episode mining for HFT needs
an efficient online method to handle fast-growing data and
identify the freshest patterns for prediction.

Another application is predictive maintenance of data
centers. Predictive maintenance strives to realize equipment
failures beforehand, for preventing unanticipated equipmen-
t downtime and promoting service quality for operations
staff [36]. By mining equipment event logs which contain
rich operational information, we can generate the prediction
model to report risky alarms or repair possible malfunctions
automatically. In most cases the log data arrive within seconds.
Also, with the growth of log data and the variations of
tasks and users, meaningful patterns may change dramatically.
Hence, we also need an fast episode mining method to discover
the latest patterns for predictive maintenance.

In summary, real-world applications present the following
three key challenges in online frequent episode mining:

• Fast-growing data.A long sequence of events is fast-
growing, and new events often arrive at an interval of seconds.
• Recency effect.Only the freshest patterns from recent events
are of interests.
• Time-critical analysis. The mining process is required to be
fast and responsive. Data-processing speed is critical in these



applications since a delay may lead to drastic loss or even
disaster.

A naive solution to the online episode mining problem is to
continuously perform a batch-mode episode mining algorithm
over the sequences in current time windows. Clearly, this
method allows much room for improvement in time efficiency
since it incurs lots of repeated computations in consecutive
rounds of mining and fails to reuse the results across different
rounds. Therefore, we aim to develop an efficient method that
fully leverages the immediate results from the last round. It
must tackle the following challenges.

• Infrequent events at the current moment may become fre-
quent in the future. Therefore, we cannot simply discard
infrequent events. Instead, we must keep all events at all time.
This requirement drastically increases the complexity of the
problem.
• Since we have to retain all events in the mining process,
the intensive computation will generate lots of episode oc-
currences. Thus, we are in need of a compact and effective
data structure for storing all such episode occurrences.
• Efficiently mining all minimal occurrences of episodes also
becomes a big challenge over the growing sequence.

In this paper, we propose an algorithm named MESELO
(Mining frEquent Serial Episode via Last Occurrence) for
online frequent episode mining. We design a sophisticated
data structure,episode trie, to compactly store all minimal
occurrences of episodes. We also introduce the concept of
last episode occurrence. Given a time-window, there is no
occurrence of the same episode after its last occurrence. An
important property based on this concept is that appending any
new event (at a new time point) to a last episode occurrence can
generate a new minimal episode occurrence. In other words, we
can directly generate all the new minimal episode occurrences
for the coming events based on the last episode occurrences.
Thereby, it enables an efficient online method to identify each
minimal episode occurrence, based on which we count the
frequency of each episode and find the frequent ones. In this
study, we also formally prove the correctness and completeness
of the proposed method, and we analyze its time and space
complexity. Experiment results of both online and offline batch
modes on ten real-world data sets demonstrate significant
superior time efficiency of the proposed method over the
baselines. In addition, we compare our method and some
state-of-the-art batch mode FEM methods based on minimal-
occurrence. They have not been comprehensively compared in
prior studies.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III presents concept
definitions and problem statement. In Section IV, we overview
the framework for online frequent episode mining. In Section
V, we describe the details of the MESELO algorithm and prove
its soundness and completeness. In Section VI, we analyze the
time and space complexity of the proposed algorithm. Sec-
tion VII presents experiment results. Section VIII concludes
the paper and discuss the future work.

II. RELATED WORK

We are not aware of prior work on the problem of online
frequent episode mining. However, there are several studies

related to this task, including frequent episode mining and
online frequent pattern mining.

Frequent episode mining [1]−[4], [6], [11], [18], [22],
[26], [27], [29]−[31], [33]−[35], [38]−[41], [43], [44] on
event sequences is an important data mining problem for
various forms of data, such as alarm sequences in telecom
networks [30], [35], web navigation logs [6], [30], time-
stamped fault reports in car manufacturing plants [22], sales
transactions [4], [41], stock data [18], [33], news [3], andso
on [34], [39]. Depending on different applications, various
definitions of episode frequency were proposed to unearth
different types of frequent episodes. Achar et al. [2] reviewed
a variety of frequency definitions, among whichminimal
occurrenceis one of the most widely used definitions.

Given a particular frequency definition, frequent episode
mining algorithms fall into two categories: breadth-first enu-
meration (also known as apriori-based) methods and depth-
first enumeration (also known as pattern-growth) methods.
The breadth-first algorithms involve two main steps: candidate
generation and frequency counting. Candidate generation is
usually improved based on anti-monotonicity or some more
restricted anti-monotone properties of frequency definitions.
However, anti-monotonicity fails to hold for minimal occur-
rences [2]. Particularly, the frequency of a sub-episode may
be less than that of its super-episode if minimal occurrenceis
used in defining episode frequency. We provide an example
to explain such an observation in Section III. The depth-first
enumeration algorithms discover frequent episodes without
candidate generation but by expanding prefix in the sequence.
They are fit to use minimal occurrence as frequency definition.
However, most descriptions of such algorithms in the literature
lack the details of how to detect a minimal occurrence of an
expanded episode. To our best understanding, these algorithms
usually consider the occurrences of a prefix as independent
to each other while expanding to longer episodes. As a
consequence, it requires a post-processing step for ensuring
a detected occurrence is truly a minimal occurrence. Recently,
Achar et al. [1] solved this problem by introducing a detailed
implementation to compute a minimal occurrence list of an
expanded episode.

Patnaik et al. [35] considered episode mining on dynamic
event streams. However, their work is fundamentally different
from ours. In their work, event sequence grows with a batch
of data, including events happening on a set of consecutive
time stamps. For a new batch of data, any batch-mode episode
mining algorithm can be used to detect the candidate episodes.
The main contribution of their work is to identify a frequency
lower-bound such that only the episodes with frequency higher
than this bound are likely the top-k frequent ones with a high
probability in a time-window. Since the episode mining process
is only applied on the batch of growing events locally, episodes
spanning over two consecutive batches cannot be identified.
In an extreme case, when each batch of data contains only
the events from a single time stamp, their method fails to
produce correct results. However, our work actually considers
this extreme case where data arrive tick by tick. In this sense
we call our problemonline frequent episode mining.

New problems extended from frequent episode mining
have also been studied in [41] and [40] recently. Wu et
al. [41] combine frequent episode mining and utility pattern



mining to discover high utility episodes in complex event
sequence. In [40], the authors focus on mining probabilistic
frequent serial episodes over a sequence of uncertain events.
In these problems, minimum support is no longer taken as
the interesting measure. Instead, they consider other domain-
specific metrics.

Online mining of different kinds of patterns, such as
mining frequent pattern on stream data, has been extensively
researched. The proposed algorithms in such studies can be
grouped into two classes, namely approximate methods and
exact methods. Approximate algorithms, such as Carma [12],
LCA [28], estDec [7], FP-Stream [10] and FDPM [42], discov-
er frequent patterns by approximate support counting. Exact
algorithms, including DSTree [24], SWIM [32], CanTree [25],
CPS-tree [37] and MOMENT [8], usually utilize a prefix-tree
structure to store itemsets. They mainly focus on maintaining
prefix-trees upon incoming new data.

The main difference between online itemset mining and
online episode mining is that, in online itemset mining, we
do not need to use the time information of each transaction.
However, in online episode mining, every event has an oc-
curring time. It is hard to use only one node to represent
the same event occurring at different times. Thus, in this
paper, we have to use a group of episode tries to store all
episode occurrences. This requirement makes the updating the
structure much harder. Thus, as mentioned earlier, we propose
the concept oflast episode occurrenceto reduce the execution
time of trie updating.

III. F REQUENT EPISODEM INING

This section provides an overview of the definitions and
properties used in this paper. For details about the framework
of episode mining, readers could refer to [30], [2], [41]. We
also formulate the problem of online frequent episode mining
in this section.
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Fig. 1. The running example of event sequence.

Definition 1 (Event sequence). LetE={e1, e2, · · · , em} be
a finite set of events. Anevent sequence, denoted~S=〈(E1, t1),
(E2, t2), · · · , (En, tn)〉, is an ordered sequence of events,
where eachEi ⊆ E consists of all events associated with time
stampti, andtj < tk for any 1 ≤ j < k ≤ n. For example,
Figure 1 shows an event sequence~S=〈 ({D}, 1), ({A, B}, 2),
({C}, 3), ({D}, 4), ({A}, 5), ({A, B}, 6), ({B}, 7), ({B}, 8)〉.

Definition 2 (Episode). An episode (also known as a serial
episode)α is defined as a non-empty totally ordered set of
events of the forme1→· · · ej→· · · ek whereei ∈ E for all i ∈
[1, k] and the eventei occurs before the eventej for all 1 ≤
i < j ≤ k. The lengthof an episode is defined as the number
of events in the episode. An episodeα of length k is called
a k-episode. For example,α = D→A→C is a 3-episode. An
eventA can also be viewed as a1-episode.

Definition 3 (Sub-episode and super-episode). Con-
sider two episodesα = e1→· · · ei→· · ·→en and β =

e′1→· · · e
′
j→· · ·→e′k wherek ≤ n. The episodeβ is a sub-

episodeof α (correspondinglyα is a super-episodeof β),
denoted asβ � α, if and only if there existsk integers1
≤ i1 < i2 < · · · < ik ≤ n such thateij = e′j for every j
∈ [1, k]. For example,2-episodeβ = D→C is a sub-episode
of 3-episodeD→A→C, but β′ = A→D is not.

Definition 4 (Occurrence). Given an episodeα =
e1→· · · ei→· · ·→ek, [t1, · · · , ti, · · · , tk] is an occurrence of
α if and only if (1) ei occurs atti for all i ∈ [1, k]; (2) t1
< t2 < · · · < tk; and (3) tk - t1 < δ where δ is a user-
specified threshold called themaximum occurrence window. t1
is thestart timeandtk is theend timeof the occurrence. For
example, in the running example sequence shown in Figure 1,
[1, 2, 3] constitutes an occurrence of episodeD→A→C if δ is
set to3 while [2, 3, 4] does not.

Definition 5 (Equivalence of occurrences). Consider an
episodeα = e1→· · · ei→· · ·→ek and its two different occur-
rences[t1, · · · , ti, · · · , tk] and [t′1, · · · , t′i, · · · , t

′
k]. The two

occurrences are consideredequivalentif and only if t1 = t′1
and tk = t′k. In other words, they are considered the same
occurrence and we use only the start time and the end time
to represent an occurrence. Based on this concept, we denote
an occurrence of episodeα as (α, [t1, tk]) hereafter.[t1, tk]
is called anoccurrence windowof α. For instance, consider
episodeD→A→B in the running example, its two occurrences
[4, 5, 7] and[4, 6, 7] are equivalent. They are both instances of
occurrence(D→A→B, [4, 7]).

Definition 6 (Minimal occurrence). Consider two time
windows [t1, t2] and [t′1, t

′
2]. [t′1, t

′
2] is subsumedby [t1, t2]

if t1 ≤ t′1 and t′2 ≤ t2. An occurrence window of episode
α, [t1, t2], is a minimal occurrence windowof α if no other
occurrence window[t′1, t

′
2] of α is subsumed by[t1, t2]. The

occurrence ofα in an minimal occurrence window[t1, t2] of
α is defined as a minimal occurrence ofα, and we denote it by
(α, [t1, t2]). The set of all distinct minimal occurrences ofα
is denotedmoSet(α). For example, in Figure 1,moSet(A→B)
= {[5, 6], [6, 7]} if δ = 3.

Definition 7 (Support of an episode). The support of
an episodeα, denoted assp(α), is defined as the number of
distinct minimal occurrences, i.e.,sp(α) = |moSet(α)|. Thus,
the support ofA→B is 2 in the running example.

Definition 8 (Frequent episode). An episode is called
frequent, if and only if its support is no less thanmin sup—
a user-specifiedminimum support threshold. Otherwise, the
episode is infrequent.

Minimal occurrence as a frequency measure does not sat-
isfy anti-monotonicity. It means the supports of sub-episodes
may be less than that of their super-episodes if minimal
occurrence is used to define episode frequency. For instance,
if δ is set to 3, the support ofA→B→C in Figure 2 is 2
(moSet(A→B→C) = {[1, 3], [2, 4]}), while the support of
its sub-episodeA→C is only 1 (moSet(A→C) = {[2, 3]}).
Neither [1, 3] nor [2, 4] is a minimal occurrence window of
A→C because[2, 3] is subsumed by the two time windows.

Problem statement of frequent episode mining (batch
mode):Given an event sequence~S, a minimum support thresh-
old min sup and a maximum occurrence window thresholdδ,
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Fig. 2. A toy event sequence.

the frequent episode mining problem in batch mode is to find
all frequent episodes in~S.

Problem statement of online frequent episode mining:
Consider a dynamic, ever-growing event sequence~S with
the current time stamptk. We define thevalid sequenceas
~Sk
∆ = 〈(Ei, ti), · · · , (Ek, tk)〉, wherei = max(1, k −∆+ 1)

and∆ ∈ N+ is the time window size within which the users
would like to find the frequent episodes.~Sk

∆ thus contains the
events in the latest∆ time stamps. The problem of online
frequent episode mining is to find all the frequent episodes
within the current valid sequence~Sk

∆.

Here, the last time stamptk may grow along the time.
When the current time goes totk+1, a brute-force and thus
clearly inefficient solution is to find the frequent episodes
within ~Sk+1

∆ from the scratch. This paper proposes an online
algorithm to solve the problem based on immediate results
from the last time stamp.

In summary, we have three user-specified parameters:

• δ, the maximum occurrence window threshold. An episode
occurrence must be within the window size ofδ.
• min sup, the minimum support threshold. An episode is
frequent only if its support is not smaller thanmin sup.
• ∆, the window size for the current valid sequence. Only
the events from the last∆ time stamps are considered for
frequent episode mining.

Usually, we have∆ ≫ δ, indicating that we consider the
sequence in a relatively long time period and each occurrence
of an episode must be within a much shorter time windowδ.

For convenience of exposition, in the ensuing discussion we
first consider the task when∆ = +∞, which means that we
consider the whole event sequence so far. Then, we consider
the general case when∆ is set to any positive integer. When
discussing this case and its examples, we always setδ = 4,
min sup = 2 and∆ = 7 for the event sequence in Figure 1.

IV. ONLINE FREQUENT EPISODEM INING FRAMEWORK

Based on the definitions and problem statements in Sec-
tion III, we introduce the framework of online frequent episode
mining in this section. Prior to that, we first introduce an
important concept used in this framework.

Definition 9 (Minimal episode occurrences starting atti
and ending no later thantj). Given a time window[ti, tj ], we
useM j

i to denote the set of all minimal episode occurrences
for which the start time isequal to ti and the end time isnot
larger thantj .

For example, in Figure 1,M7
5 = {(A, [5, 5]), (A →

A, [5, 6]), (A → B, [5, 6]), (A → B → B, [5, 7]), (A → A →
B, [5, 7]) }.

Theorem 1:Given a sequence~S with the time stamps
starting from 1 tok, M = {M δ

1 ∪ M δ+1
2 ∪ · · · ∪ Mk−1

k−δ

∪ Mk
k+1−δ ∪ Mk

k+2−δ ∪ · · · M
k
k−1 ∪ Mk

k } contains all the
minimal episode occurrences in this sequence.

Proof: Since M j
i contains all minimal occurrences of

episodes starting at time stampti for eachi ∈ [1, k], the set
M does not omit any minimal occurrence in~S. Since the time
interval between the start time and the end time of eachM j

i

is always smaller thanδ, i.e., tj − ti < δ, for all 1 ≤ i ≤
k and δ ≤ j ≤ k, every minimal occurrence inM always
satisfies the constrains in our formulation (See Definition 4).
Hence,M always contains all valid minimal occurrences of
all episodes in~S.

Based on the set of all minimal episode occurrences inM,
we can count the support of each episode and then identify all
the frequent episodes whose frequencies exceedmin sup.

Theorem 1 provides a natural way to divide the
elements in M into k separate subsets, namely
M δ

1 ,M
δ+1
2 , · · · ,Mk−1

k−δ ,M
k
k−δ+1,M

k
k−δ+2, · · · ,M

k
k−1,M

k
k .

These subsets can be further divided into the following two
groups:

Mex = {M δ
1 ,M

δ+1
2 , · · · ,Mk−1

k−δ ,M
k
k−δ+1} (1)

Min = {Mk
k−δ+2,M

k
k−δ+3, · · · ,M

k
k−1,M

k
k } (2)

Clearly,Mex contains the firstk− δ+1 components. For any
M j

i ∈Mex, we havej− i = δ−1. It means thatM j
i includes

all possible minimal episode occurrences starting from time
stampti and having minimal occurrence window sizes at most
δ. On the other hand,Min contains the lastδ−1 components.
For anyM j

i ∈Min, j − i < δ − 1.

Consider that the event setEk+1 at the time stamptk+1

comes to the sequence of~S. Since, for every componentM j
i ∈

Mex, j − i = δ − 1, the combination of any occurrence in
M j

i and any event inEk+1 results in an occurrence whose
occurrence window size is bigger thanδ. Thus, the new events
in Ek+1 do not affect the components inMex. However, for
any componentM j

i ∈ Min, sincej − i < δ − 1, any such
combination leads to an occurrence whose occurrence window
size is at mostδ. Thus, the new events inEk+1 do affect
the components inMin. Then, it comes to the crux of the
proposed method, namely how to updateMex andMin with
the new eventsEk+1 appended.

Next, we will first address the question of how to store the
components inMex andMin, and then discuss the updating
process when new eventsEk+1 are appended to the end of~S.

A. The Storage Framework

For the traditional batch mode problem of frequent episode
mining, all solutions remove infrequent events by scanning
the whole sequence in the first round, and then the mining
process performs in the space of frequent events. This pre-
processing step greatly reduces the event space and thus saves
much memory consumption. However, in the online mode of
frequent episode mining we cannot apply such pre-processing
since an infrequent event in the current sequence may become
frequent in the future. Thus, the mining process can only be
conducted in the original event space, which may lead to a
sharp increase of memory consumption for storing all minimal



episode occurrences. To tackle this challenge, we propose a
storage management framework, as shown in Figure 3(a).

In Figure 3(a), all components inMin andMex are stored
by chronological orders. Since theδ − 1 components inMin

will be updated with the new coming events,Min can always
stay in the main memory. (Note thatδ usually is a small
number.) For the other partMex, since the new coming events
do not affect any components inMex, we can save thek−δ+1
components into the external storage especially whenk is
very large. There are still two simple structures stored in this
framework, namelyfrequent episode setandinfrequent episode
set. Both of them are tables of which the key records the name
of episodes and the value records the support count of the
corresponding episode. Same withMex , the two structures
can also be stored in external storage when the number of
discovered episodes is very large.

B. The Solution Framework

Based on the storage framework, Figure 3(b) shows the
solution framework of the proposed method. Specifically, with
Ek+1 coming this updating process can be detailed into the
following two steps:

1) We first add a new componentMk+1
k+1 into Min of

Equation (2). Namely, we have

Min ←Min ∪ {M
k+1
k+1 } (3)

Then, for each componentMk
i in Min of Equation (3),

update its upper index fromk to (k+1). Finally, we have

M
′

in = {Mk+1
k−δ+2,M

k+1
k−δ+3, · · · ,M

k+1
k ,Mk+1

k+1 } (4)

2) For the first component inM
′

in, namely Mk+1
k−δ+2, it

reaches the maximal time range size of(δ − 1). Thus,
we remove it fromM

′

in and then put it intoMex of
Equation (1). Namely, we have

Min ←M
′

in − {M
k+1
k−δ+2} (5)

Mex ←Mex ∪ {M
k+1
k−δ+2} (6)

In short, this updating process can be summarized as
follows,

Mex ←Mex ∪ {M
k+1
k−δ+2} (7)

Min ← {M
k+1
k−δ+3, · · · ,M

k+1
k−1 ,M

k+1
k ,Mk+1

k+1 } (8)

After these two steps, we update the current set of frequent
episodes. AfterEk+1 comes, the solution finds all the new
minimal episode occurrences, denoted by

Q←(Mk+1
k−δ+2 −Mk

k−δ+2) ∪ (Mk+1
k−δ+3 −Mk

k−δ+3)

∪ · · · ∪ (Mk+1
k −Mk

k ) ∪Mk+1
k+1

(9)

Thus, the count of each episode inQ will be added1. Thus,
when∆ = +∞ (meaning that the valid event sequence covers
the full size of the sequence until now), some infrequent
episodes will change to be frequent with the coming ofEk+1.

C. The Solution When∆ 6= +∞

When∆ 6= +∞, the episodes with the starting time outside
the valid event sequence will expire. Thus, the count of each
expired episode should minus 1. WhenEk+1 comes, the valid
event sequence changes to~Sk+1

∆ , meaning that all the events
in Ei (i = max(1, k −∆+ 1)) expire. Therefore, the count
of each episode inMi+δ−1

i should minus 1. Some previous
frequent episodes may become infrequent after this step.

V. MESELO ALGORITHM

Next, we detail the method of identifying all the new
minimal episode occurrences, denoted byQ in Equation (9),
with the coming ofEk+1. In this section, we will give its
efficient solution.

A. Episode Trie

First, we give the description of the data structure, which
stores all minimal occurrences inM j

i . Remind thatM j
i is the

set of all minimal episode occurrences, starting at timeti and
ending no later thantj . In our solution, we use thetrie structure
to store all the elements inM j

i in a compact way.

A trie [15], also called prefix tree, is an ordered tree data
structure that is used to store a dynamic set where the keys
are usually strings. In a trie, all the descendants of a node
have a common prefix of the string associated with that node,
and the root is associated with the empty string. In this study
we utilize the trie structure to record all the minimal episode
occurrences inM j

i associated with the starting timeti and the
end timetj . We call this data structureepisode trie.

Definition 10 (Episode Trie). Given a time-window[ti,
tj ], anepisode trie(E-trie for short, denotedT j

i ) is a trie-like
structure defined below.

1) Each nodep, denoted byp.event:p.time, consists of
two fields: p.event and p.time. Here,p.event registers
which event this node represents, andp.time registers the
occurrence time stamp of such event.

2) The eventfield of the root is associated with the empty
string (labeled as “root”), and thetimefield of the root is
equal toti, the starting time of all the episode occurrences
in this set.

With this data structure, each nodep (except the root) in
an episode trie actually represents an episode occurrence.The
event sequence along the path from the root top corresponds
to its content, and its occurrence window is[ti, p.time]. For
clarity and convenience, we useep(p) to represent the episode
associated with a nodep in an episode trie, and then the
episode occurrence can be denoted as(ep(p), [ti, p.time]).

For example, Figure 4 shows the episode trieT 7
5 to store all

the elements inM7
5 for the running example in Figure 1. Here,

M7
5 = {(A, [5, 5]), (A→ A, [5, 6]), (A→ B, [5, 6]), (A→ B→

B, [5, 7]), (A→ A→ B, [5, 7]) }. It contains 5 minimal episode
occurrences. The starting time of all these occurrences is equal
to 5, and their end time is not later than 7. More importantly,
each element inM7

5 corresponds to a node (except the root)
in T 7

5 . For example, the occurrence of(A → A → B, [5, 7])}
corresponds to the leftmost leaf node in the trie of Figure 4.
A → A → B is actually the event sequence along the root to



Frequent Episode Set Infrequent Episode Set

...

...

Key Value Key Value

... ... ... ...

(a) The storage framework in our approach.

Frequent Episode Set Infrequent Episode Set

...

...
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(b) The solution framework when event setEk+1 is coming.

Fig. 3. The whole framework in our approach, wherei = max(1, k −∆+ 1).

this leftmost leaf node. In this way we callT j
i is equivalent

to M j
i , denoted asT j

i ⇔M j
i .

root:5

A:5

A:6

B:7

B:6

B:7

Fig. 4. The episode trieT 7
5 .

B. The Last Episode Occurrence

Next, we introduce another important definition,the last
episode occurrence, which is the key concept to the proposed
online algorithm.

Definition 11 (The last episode occurrence). Given a time
window [ti, tj ], an episode occurrence(α, [t1, t2]) (ti ≤ t1 ≤
t2 ≤ tj) is the last episode occurrenceof α within this time
window if and only if there does not exist another occurrence
of (α, [t

′

1, t
′

2]) (ti ≤ t
′

1 ≤ t
′

2 ≤ tj) such thatt
′

1 > t1. The set
of all the last episode occurrences within the time window of
[ti, tj ] is denoted byLj

i .

See the running example in Figure 1. Consider the time
window of [4, 7]. (A→B, [6, 7]) is the last occurrence of
episodeA→B within this time window. However,(A→B, [5, 6])
is not the last occurrence because of the existence of(A→B,
[6, 7]).

With the definition of the last episode occurrence, the set
of Mk

j can be divided into two parts. Namely, considering the
time window of [k − δ + 1, k], the two disjoint parts ofMk

j

can be represented as

M
k
j =











Sk
j = Mk

j ∩ Lk
k−δ+1

Sk
j = Mk

j − (Mk
j ∩ Lk

k−δ+1)

(10)

Clearly, all the elements inSk
j are thelast minimaloccurrences

within the time window of[k−δ+1, k]. However, the elements
in Sk

j are just theminimal occurrences, but not thelast ones.

Check the running example in Figure 1 again. Whentk =
7, with time window[4, 7], M7

5 can be divided into two parts.
Namely,S7

5 = {(A → A, [5, 6]), (A → A → B, [5, 7]), (A →
B→ B, [5, 7]) }, andS7

5 = {(A, [5, 5]), (A→ B, [5, 6])}.

Remind thatM j
i is equivalent to its corresponding episode

trie T j
i . Thus, the nodes inT j

i can then be divided into two
groups. If the corresponding episode of a nodep in T j

i belongs

to Sj
i we call thatp is a non-last-occurrence node(nlo-node

for short); Otherwise,p is a last-occurrence node(lo-nodefor
short). As shown in Figure 5 (a) forT 7

5 , all the nlo-nodes are
shaded while the lo-nodes remain blank.

It is clear that every lo-node inT j
i corresponds to a last

minimal episode occurrence. Instead, each nlo-node is only
associated with a minimal occurrence, but not a last one. The
lo-nodes and nlo-nodes have different properties in generating
the minimal episode occurrences when new events coming.
Thus, we clearly distinguish these types of nodes. In the
following we will detail the proposed algorithm for online
frequent episode mining.

C. MESELO Algorithm

In this subsection, we formally introduce the algorithm
MESELO. According to the solution framework, there are all
together two steps for updating process in the algorithm with
Ek+1 coming, 1) add a new componentT k+1

k+1 to Min and
update the upper index of each componentT k

i in Min from
k to k + 1; 2) transfer the component that reach the maximal
time range size ofδ−1, i.e.T k+1

k−δ+2 toMex . Since, the second
step is relatively simple, we merely focus on the first step. In
order to explain our algorithm, we will consider the situation
that the time stamptk = 7, andE8 is following to arrive as
an example in this subsection.

For the first step, addT k+1
k+1 can be completed by build

an E-trie viaEk+1. Algorithm 1 shows its pseudo code. For
each evente ∈ Ek+1, we insert a node associated withe as
the child of the root node. For example, suppose the event set
occurring on time stamp8 is arriving as the latest event set,
now the maximum occurrence window we consider is[5, 8],
andT 8

8 is shown as Figure 5 (g).
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Fig. 5. The results of update process inMin from time stamp = 7 to time
stamp = 8. All the nlo-nodes are marked as shaded, and lo-nodes leave blank.

Algorithm 1: BuildTrie(Ek+1): Build Episode Trie via
Ek+1

Input : Ek+1: the new event set
Output : T k+1

k+1 : the new E-trie
1 create a root noderoot = root:tk+1;
2 foreach evente ∈ Ek+1 do
3 create a child nodep = e:tk+1 of root ;

4 returnT k+1
k+1 ;

Then, MESELO begins to update all upper index ofT k
i

from k to k + 1. We perform such a process by areverse
chronological order that is we update fromT k

k to T k
k−δ+2.

The updating order is really important since we can use the
concept of last minimal occurrence and minimal occurrence
to improve the efficiency of algorithm. Briefly speaking, we
only expand lo-nodes in eachT k

i , wherek − δ + 2 ≤ i ≤ k,
with a simple additional constraint in this process. Meanwhile,
the property of lo-node may change as new minimal episode
occurrence is discovered.

Algorithm 2 shows the pseudo code of this step. First, we
initialize the new discovered minimal episode occurrence set
Q as an empty set. SinceT k+1

k+1 contains all new discovered
minimal occurrences of1-episodes, we add each of them to
Q (Line 2–3). Then, MESELO performs a sequential updating
from T k

k to T k
k−δ+2. For updating everyT k

i (k− δ+2 ≤ i ≤
k), the operations indeed can be separated into two parts. The
first part is to expand nodes for adding minimal occurrences
of episodes, and the second part is to update the type of nodes
in the trie. For the first step, we have two essential constraints:
1) only lo-nodes can be expanded, and 2) when preparing to
add a node associated with evente, only the nodes which do
not contain child node associated withe can be expanded.
Specifically, for any lo-nodep in T k

i (k − δ + 2 ≤ i ≤ k),
we first get an episodeα associated withp as a prefix ready
to be expanded (Line 7). Then, for each evente belonging
to Ek+1, we can always add a child nodeq of p which is
associated withe if there is no child node ofp associated with
the same evente (Line 9 and 10). Note that it is an important
constraint for both our frequent episode mining problem and

the trie data structure. Then, a new expanded node can refer
to a new episode with a new minimal occurrence. We also add
such a minimal occurrence to the setQ ready for the later
use (Line 11 and 12).

TakeT 7
6 shown in Figure 5 (b) as an example. Note that

the only event inE8 is B. As shown in the figure, since the
nodeB:6 is a nlo-node, MESELO does not expand it. For
the lo-nodeA:6, since there is already a child node which
is associated with eventB, the algorithm does not to expand
it. For another two lo-nodesB:7 on the leaf, MESELO adds
a child nodeB:8 for both of them as they satisfy all the
constraints in this part. Finally, two new discovered minimal
episode occurrences(A→B→B, [6, 8]) and (B→B→B, [6, 8])
are added intoQ.

Algorithm 2: UpdateTries: Mining New Minimal
Episode Occurrences

Input : Min : the set of minimal occurrence still varies
Ek+1: the set of events occurring at timetk+1

Output : Q: the new discovered minimal episode occurrence
set

1 Q ← ∅;
2 foreach evente ∈ Ek+1 do
3 Q ← Q ∪ (e, [tk+1, tk+1]);

4 i ← k;
5 while i ≥ k − δ + 2 do
6 foreach lo-nodep ∈ T k

i do
7 α ← ep(p);
8 foreach evente ∈ Ek+1 do
9 if there is no child node ofp associated withe

then
10 create a child nodeq = e:tk+1 of p;
11 α′ ← ep(q);
12 Q ← Q∪ (α′, [ti, tk+1]);

13 if α is contained byQ then
14 setp to a nlo-node;

15 i ← i − 1;

16 returnQ;

After adding nodes to an episode trie, there is another
important step left which is to check whether the nodep
should be change into a nlo-node. The transformation is
triggered when there is a sameα = ep(p) in Q, which means
there is some other minimal occurrence ofα is behind this
one (Line 13–14). Continue taking the update ofT 7

6 as an
example. Before updatingT 7

6 , theQ = {(B, [8, 8]), (B→B,
[7, 8])}. When the expanding of the nodeB:7 on the rightmost
leaf of T 7

6 is finished, we check the prefix episodeα = B→B.
SinceQ contains an element associated with episodeB→B,
MESELO change such node into a nlo-node, and it will not
be expanded in the future. The result ofT 8

6 is shown as
Figure 5 (e). The whole results of update process of this step,
i.e. updateT 7

5 , T 7
6 andT 7

7 to T 8
5 , T 8

6 andT 8
7 , are shown as

Figure 5 (a)–(f), respectively. After updatingMin , the next
step is to moveT k+1

k−δ+2 into Mex as its time range reaches
δ − 1. We leave its pseudo code for the space limitation.

After updating episode tries, MESELO performs the final
step which is to find frequent episodes in~Sk+1

∆ . As previously
mentioned, we need to load the expire episode trieT k−∆+δ

k−∆+1



from Mex and minus support count of all episodes in such
E-trie by 1 and add support count of all episodes inQ by 1.
Then, episodes whose support count is no less thanmin sup
are output. For example, under the parameter settings in the
running example, the set of frequent episodes in~S8

7 is {A, B,
A→B, A→B}. D, D→A andD→B, which are frequent in~S7

7 ,
become infrequent in~S8

7 sinceE1 = {D} expires whenE8

arrives. Algorithm 3 gives the pseudo code of this step.

With all aforementioned algorithms, we can give the pseu-
do code of the whole solution framework in Algorithm 4. All
algorithms are called as sub-procedures in our approach.

Algorithm 3: OutputF: Output Frequent Episodes
Input : C: the current set of infrequent episodes
F : the current set of frequent episodes
Q: the new discovered minimal episode occurrence set
tk+1: current time stamp
∆: the window size of valid sequence
min sup: minimal support threshold
Output : F : the current set of frequent episodes

1 load T k−∆+δ
k−∆+1 fromMex ;

2 foreach nodep ∈ T k−∆+δ
k−∆+1 do

3 α ← ep(p);
4 sp(α) ← sp(α) − 1;

5 foreach (α, [ti, tj ]) ∈ Q do
6 sp(α)← sp(α) + 1;

7 updateF andC by min sup;
8 returnF ;

Algorithm 4: MESELO Algorithm
Input : Ek+1: the new event set
δ: maximum occurrence window
min sup: minimum support
∆: window size
Output : F : frequent episodes

1 C ← current set of infrequent episodes;F ← current set of
frequent episodes;

2 T k+1
k+1 ← BuildTrie(Ek+1);

3 Q ← UpdateTries(Min , Ek+1);
4 updateMin andMex by Eq. (5) and (6);
5 F ← OutputF(C,F ,Q, tk+1,∆,min sup);

D. Correctness and Completeness of MESELO

In this subsection, we prove the correctness and the com-
pleteness of our approach. Not that the essential task of
our problem is to find minimal episode occurrences in event
sequence, and our algorithm can detect them efficiently. By
our algorithm, an episodeα associated with a lo-nodep in
an E-trie inMin can directly be expanded with an evente if
there is no child node ofp which is associated withe, then
we can get a new episodeα′. We first prove such a kind of
expansion can derive a minimal occurrence ofα′.

Theorem 2:(Correctness). Given an E-trieT k
i , wherek−

δ + 2 ≤ i ≤ k and an event setEk+1, for a lo-nodep of T k
i

with ep(p) = α and an evente ∈ Ek+1, if there is no child
node ofp associated withe, then we can get a new episode
α′ = α → e with a new minimal occurrence(α′, [ti, tk+1]).

Proof: If (α′, [ti, tk+1]) is not a minimal occurrence, we
should find a minimal occurrence of(α′, [tj , tl]) such that
[tj , tl] is subsumed by[ti, tk+1]. Sincep is a lo-node ofT k

i ,
it is impossible to exist an occurrence(α′, [tj , tl]) such that
tj > ti, otherwisep should be a nlo-node. On the other hand,
it is also impossible to exist an occurrence(α′, [tj , tl]) such
thattl < tk+1 since there is no child node ofp associated with
e. Hence, we haveti = tj andtl = tk+1. (α′, [ti, tk+1]) is the
minimal occurrence ofα′ in the time window[tk−δ+2, tk+1].

Theorem 3:(Completeness). An E-trieT k
i , wherek−δ+2

≤ i ≤ k, stores all minimal episodes occurrences whose start
time is equal toti, and the end time is not bigger thantk. After
the updating process of MESELO algorithm when a new event
setEk+1 is coming, the updated E-trieT k+1

i stores all minimal
episode occurrences whose start time isti and the end time is
not bigger thantk+1.

Proof: To prove this theorem, we in fact need to prove all
the new inserted nodes inT k+1

i are associated with minimal
episode occurrences whose start time isti and the end time
is tk+1. Suppose there is an episode minimal occurrence(α
→ e, [ti, tk+1]) and the node associated with evente is not
in T k+1

i where e ∈ Ek+1. Then, such a node associated
with e must exists in anotherT k+1

j where j 6= i if we can
acquire an occurrence ofα′. However, it is impossible since
the occurrence window ofα′ can only be[tj , tk+1] andj 6= i.
Hence, all the new discovered episode minimal occurrence
whose the start time isti and the end time istk+1 must be
stored inT k+1

i instead of other tries.

As MESELO sequentially scans over the event sequence,
it finds all and only minimal occurrences of episodes within
every possible time window. Hence, the algorithm is soundness
and completeness.

In MESELO algorithm, we have marked all last episode
occurrences in[tk−δ+1, tk] in T k

k−δ+1, T k
k−δ+2, · · · , T k

k−1,
T k
k at time stamptk. Then, when new events on time stamp

tk+1 is coming and the tries inMin are updated toT k+1
k−δ+2,

T k+1
k−δ+3, · · · , T k+1

k , T k+1
k+1 , there will be some lo-nodes be

changed to nlo-nodes since the occurrences associated with
these nodes are no longer the last ones in the current time
window [tk−δ+2, tk+1]. Hence, we have to prove the following
theorem.

Theorem 4:Given a group of episode triesT k
k−δ+2,

T k
k−δ+3, · · · , T k

k−1 and T k
k and a new discovered minimal

episode occurrences setQ, when updating the upper index
of these tries tok + 1, if a lo-nodep of E-trie T k

i (where
k − δ + 2 ≤ i ≤ k) is in Q, which meansep(p) ∈ Q,
then(ep(p), [ti, p.time]) is no longer a last episode occurrence,
otherwise, it is still a last episode occurrence.

Proof: For convenience we assumeep(p) = α in the
proof. Since MESELO algorithm updates everyT k

i in a reverse
chronological order, for a lo-nodep in T k

i , if α ∈ Q, there
must exist a new expanded lo-nodeq (which is also a leaf node)
in an episode trieT k+1

j wherej > i andep(q) = α. According
to Definition 11,(α, [ti, p.time]) is not a last occurrence of
α in [tk−δ+2, tk+1] because there is another occurrence of
(α, [tj , q.time]) such thattj > ti. Hence, the nodep need
to be changed into a nlo-node. Similarly, ifα /∈ Q, then we



cannot find another occurrence ofα behind of(α, [ti, p.time])
in [tk−δ+2, tk+1]. Hence,p is still a lo-node in this situation.

VI. COMPLEXITY ANALYSIS

In this section, we analyze the time and space complexity
of MESELO. In particular, we focus on analyzing the cost of
computation and storage in updatingMin for every new event
set and only consider the worst case.

For simplicity, we assume that the number of event types
is m, i.e., |E| = m, and each event set always contains all
m events. According to node expansion strategy in MESELO,
every node at most containsm child nodes. Hence, the worst
case is that every non-leaf node in each E-trie always contains
m child nodes. It leads to the bulkiest structure, and will cost
the longest time for updating operations.

As we mentioned before, when an event setEk+1 is
coming, the updating process forMin includes constructing
a new E-trieT k+1

k+1 and updating theδ − 1 episode triesT k
i

to T k+1
i wherek − δ + 2 ≤ i ≤ k. For constructingT k+1

k+1 ,
MESELO will perform m insertions since we assume there
arem events inEk+1. Then, for updating eachT k

i to T k+1
i

(k − δ + 2 ≤ i ≤ k), only leaf nodes inT k
i can be further

expanded as each non-leaf node has already containedm child
nodes. Given an E-trieT k

i , the number of leaf node inT k
i is

mk−i+1. Further,m child nodes can be inserted into each leaf
node. Hence, in this step the total number of node insertion
is m(mδ−1 +mδ−2 + · · ·+m2 +m). In sum, for every new
coming event set, the overall time complexity for updating
Min will be O(mδ +mδ−1 +mδ−2 + · · ·+m3 +m2 +m)

= O(m(mδ−1)
m−1 ). In short, the time complexity isO(mδ).

After the update process in the worst case we have
discussed, every E-trie inMin has its bulkiest structure.
Then, given an E-trieT k+1

i , the maximum number of n-
odes is

∑k+1
j=i m

k−j+2, where k − δ + 2 ≤ i ≤ k + 1.
The total number of nodes of all E-tries inMin will be∑k+1

i=k−δ+2

∑k+1
j=i m

k−j+2. Hence, the space complexity for
storing all nodes in memory will beO(mδ+2mδ−1+3mδ−2+

· · ·+ (δ− 2)m3 + (δ− 1)m2 + δm) = O(m
2(mδ−1)
(m−1)2 −

mδ
m−1 ).

In short, the space complexity is alsoO(mδ).

In most applications, the size of event setm and the
maximum occurrence window thresholdδ are both small.
Thus, the proposed method is practically useful in online
episode mining.

VII. E XPERIMENTS

A. Experiments Settings and Data Preparation

In this section, we evaluate the performance of the pro-
posed algorithms on both online mode and batch mode.
Experiments are performed on a server with a 2.00 GHz
Intel Xeon E5-2620 Processor and 32G gigabytes memory,
running on Windows Server 2008, and all of the algorithms
are implemented in Java. For online mode, as we supposeMex

is always in a dynamically growth and usually has masses of
elements, we store every component inMex to a database.
In these comparisons, a remote MySQL database server with

a 2.00GHz Intel Xeon E5-2620 Processor and 16G gigabytes
memory running on Linux is used, and the two machines are
connected by 100Mb a local area network.

1) Experiments Settings:Here, we compare the proposed
algorithm to the baseline methods for frequent episode mining
in both online and batch mode.

Online mode. For online mode comparison, we design an
intuitive brute force method, denoted as BRUTE, as a baseline.
In BRUTE, every episode minimal occurrence is stored in an
ordered record tableB. Once an event setEk+1 occurring
at time stamptk+1 is arriving, BRUTE always performs
three steps. First, the minimal occurrences of episodes whose
start time equals totk−∆+1 are loaded fromB. Since these
elements expire in the current valid sequence window, we
have to decrease the frequency of these episodes. Second, the
minimal occurrences of episodes whose start time ranges from
[tk−δ+2, tk] are loaded fromB, and BRUTE performs an ex-
haustive generation of new episode occurrences by expanding
these minimal occurrences with events inEk+1. Third, the
algorithm checks whether every new episode occurrence is
a minimal occurrence and only updates the frequency of the
episodes with new minimal occurrences.

To further demonstrate the effectiveness of the proposed
concept of thelast episode occurrence, we deliberately design
another baseline, denoted as MESELO-BS. MESELO-BS per-
forms the similar steps as MESELO except that it expands
episode occurrences on every node of any episode trie. In
MESELO, there are two constraints to ensure every expansion
deriving to a minimal episode occurrence: 1) onlylo-nodes
are considered to be expanded; 2) for alo-node p, only if
there is no child node ofp associated with the input evente,
e can be inserted as a child ofp. However, these two rules
are not considered in node expansion of MESELO-BS. Thus,
we have to check the minimal occurrences of episodes by a
post-processing step.

In both online or traditional frequent episode mining prob-
lem, each occurrence of same event has different meanings.
While online frequent pattern algorithms do not use time in-
formation of transactions or items, they view every occurrence
of a specific item in different transactions as the same. Hence,
we can hardly conduct them to our problem directly or through
a slight modifications. Due to the above reasons, we do not
include these algorithms in such comparison.

Batch mode. Several state-of-the-art methods for offline
frequent episode mining, namely MINEPI+ [18], PPS [27],
UP-Span [41] and DFS [1], are compared in batch mode. All of
these algorithms directly use minimal occurrence as frequency
of episodes or compute minimal episode occurrences during
the process. There are still some differences among them. PPS
can only output thelongest distinct frequent episodes. UP-
Span is originally proposed for mininghigh utility episodes,
however computing minimal occurrences of episodes is the
core part of this algorithm. DFS computes minimal episode
occurrences as an important operation though it is interested
in other frequency measures. For UP-Span and DFS we slightly
modified these two methods to our best knowledge in order to
fit our problem. It is worth mentioning that these state-of-the-
art methods have not compared with each other in previous
literatures, and we are the first to compare them in terms of



TABLE I. STATISTICAL INFORMATION ON DIFFERENT DATA SETS

Data set #Time stamp #Events Avg. #Events per Time stamp

Stock-1

2509

4 1.0
Stock-2 8 2.4
Stock-3 16 4.7
Stock-4 24 7.0
Stock-5 32 9.5
Stock-6 40 11.4
Retail 88,162 16,470 10.3

Kosarak 990,002 41,270 8.1
chainStore 1,112,949 46,086 7.3

BMS 59,601 497 2.5

the execution time in one paper.

In this study we do not compare the widely-cited method
MINEPI [30] due to the following reasons. First, MINEPI
adopts the apriori-like candidate generation, and thus some
frequent episodes with longer length will be missed since the
minimal occurrence does not hold the anti-monotone property.
In other words, the output of MINEPI is different from that
of the problem considered in this study. Second, some initial
experiments show that MINEPI always performs the worst
among all the methods.

Here, the proposed MESELO performs to process a dy-
namic event sequence. For fair comparison, in this batch mode
we can perform a prior scan to find frequent events, then
all compared methods perform the mining on the sequence
containing only frequent events.

2) Data Preparation:Ten real data sets are used to evaluate
the performance of the algorithms, and the data sets can be
divided into two groups according to mining tasks, namely
online mode data setsandbatch mode data sets, respectively.

The online mode data setsinclude six sequences from
China Stock Exchange Daily Trading list (denoted as Stock-
1 to 6) over2509 trading days from January1st, 2004 to
May 9th, 2014. Each sequence contains the events from
the stocks of the corresponding industry (1–pharmaceuticals
industry, 2–security industry, 3–electricity power industry, 4–
iron and steel industry, 5–nonferrous-material industry and 6–
estate industry). The events for a stock are generated based
on its everyday closing price. Specifically, we calculate the
increase ratior of price between two consecutive trading days
and then discretize the values ofr into 4 levels: UH (r >=
3.5%), UL (0% ≤ r ≤ 3.5%), DL (−3.5% ≤ r < 0%),
DH (r ≤ −3.5%). Thus, every day each stock can generate
one of the four above events, and the events from the stocks
belonging to a specific industry are put together to form the
event sequence for the corresponding industry.

The batch mode data setsinclude four classic real data
sets, namely Retail [16], ChainStore [13], Kosarak [16] and
BMS [17]. Among them, Retail and chainStore are market
basket data from stores, while Kosarak and BMS are all click-
stream data from some web sites. The processing method on
these data sets are detailed in [41]. Table I shows the statistic
information of all data sets used in the experiments.

B. Experiment Results

1) Online Mode Comparison:In this comparison, we se-
quentially read every event set of the coming time stamp,
and perform online frequent episode mining. We record the

execution time at each time stamp and use their average value
as the measure for the comparison. It should be mentioned that
this average time over all time stamps is only related toδ (the
maximum occurrence window threshold). The reason is identi-
fying the new minimal occurrences by updating E-tries inMin

dominates the execution time of the MESELO algorithm at
each time stamp. However, the other two parametersmin sup

and∆ are only used to maintain the frequent episode set at
every time stamp, which consumes only a small fraction of
time since the set of frequent and infrequent episodes usually
vary slightly at two consecutive time stamps.

With all aforementioned descriptions, we show the exe-
cution time on6 sequences with different values ofδ when
min sup = 10 and ∆ = 2500. In Figure 6, the execution
time on different sequences are shown in sub-figures. In each
sub-figure we also zoom in the area of the execution time for
MESELO and MESELO-BS to clearly show their difference.
This zooming-in figure is embedded inside each sub-figure.
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Fig. 6. The execution time for varyingδ by fixing min sup = 10 and∆
= 2500.

From the figure, we can clearly observe that MESELO-
BS and MESELO have better performance compared with the
BRUTE as the maximum occurrence window increases. The
gap between the execution time of BRUTE and that of other
two algorithms becomes more significant asδ increases. The
MESELO series algorithms outperform BRUTE at least one
magnitude of order and over100 times whenδ = 6. Also,
MESELO always outperforms MESELO-BS under different
parameter settings, and the gap in terms of the execution time
becomes more significant asδ increases. It clearly shows that
the strategies used in MESELO to reduce the number of node
expansions greatly reduce the execution time.

To further demonstrate the effectiveness of the strategies



for reducing the number of node expansions in MESELO, we
compare the average size of the E-tries (the number of nodes
in trie) from MESELO and MESELO-BS. Here, the episode
tries completing all their node expansions are considered.With
the strategies to reduce the node expansions, MESELO will
have the smaller episode tries. Thus, in Figure 7 we show
the relative size of the episode tries from MESELO compared
to those from MESELO-BS. This relative size equals to 1
means that the two tries have the same size. As shown in this
figure, the tries from MESELO is much smaller than those
from MESELO-BS. This saving is much more significantly
when δ increase. Whenδ = 10 only 20% − 50% of the trie
nodes are needed in MESELO compared to MESELO-BS. We
can observe that the strategies for reducing node expansions
in MESELO perform well especially in the cases with small
event set size and largeδ. The direct reason for that is there
are more non-last-occurrence nodes in such a situation. We
emphasize that a small event set as well as a bigδ leads
to a deep episode trie with limited kinds of events on the
nodes. It makes many last-occurrence nodes transfer to the
non-last-occurrence nodes during the updating process viathe
definition of last episode occurrence. Note that once a non-last-
occurrence node is typed, it will not be expanded any further,
and that is why the strategies can contribute much on space
saving in these cases.
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Fig. 7. The relative size of E-trie from MESELO compared to MESELO-BS.
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Fig. 8. The execution time vs.min sup.

2) Batch Mode Comparison:Figure 8 shows the execu-
tion time on4 different sequences with different settings of
min sup when δ = 3. The scale ofy-axis is in log style in

Figure 8. We can see that MESELO holds the lowest value in
execution time compared with the other algorithms in3 of 4
data sets with different values ofmin sup. In the data sets of
Retail and ChainStore, the gap between MESELO and other
algorithms become more significant asmin sup increases.
The bigger value ofmin sup remove more infrequent events
for MESELO. Since the time complexity of MESELO is
O(mδ) (wherem is the size of event set at a time stamp),
the reduction in the size of event set will significantly reduce
the execution time. In the Kosarak data set, MESELO still
outperforms all baselines. However, in the BMS data set PPS
and UP-Span are slightly better than MESELO, and their
performances are similar with the same order of magnitude.
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Fig. 9. The execution time vs.δ.

Figure 9 shows the execution time on the4 data sets with
different settings ofδ whenmin sup is fixed (i.e.min sup
= 400 in Retail, min sup = 3000 in ChainStore,min sup
= 4000 in Kosarak andmin sup = 6 in BMS). Since the4
sequences have different length, we select different values of
min sup for different data sets such thatmin sup/|~S| is in
the range of[0.01%, 0.45%]. The scale of y-axis is in log style
in Figure 9. As shown in the figure, the execution time of all
these methods increases asδ increases. MESELO outperforms
the baselines whenδ ≤ 4 except on BMS data set. The steeper
growth slope of MESELO compared with other algorithms
indicates that MESELO is more sensitive toδ.

By looking closer on BMS data set, we observe that UP-
Span performs extremely well compared with its performance
on other three data sets. We conjecture what makes this data
set different is because its distinct smaller event set, shorter
sequence length, and most importantly, obviously less number
of events per timestamp. By analyzing all compared batch
mode FEM algorithms, we learn that the performance of UP-
Span and PPS is related to the number of events per timestamp,
and BMS has obviously less value on such criterion.

The comparison on batch mode data show that: 1) the
overall performance of MESELO for batch mode episode
mining is better than the existing state-of-the-art methods; 2)
MESELO is more sensitive tomin sup and δ. It is more
appropriate for discovering short episodes in which the time
interval between the first and the last events is not big.



VIII. C ONCLUSION AND FUTURE WORK

In this paper, we formulate the online frequent episode
mining problem, which is especially useful to time-critical
applications with growing sequences. We propose an efficient
algorithm (named MESELO) for this problem. By the concept
of last episode occurrence, MESELO can detect the mini-
mal episode occurrences without performing a post-process
checking. Also, utilizing the proposed episode trie, MESELO
stores all the minimal episode occurrences in a compact way.
Experiments on ten real data sets show the efficiency of the
proposed algorithm, which is at least one magnitude of order
faster than other baseline methods.

In our future work we will consider attributes on events
to identify more interesting episodes. Additionally, to further
increase time efficiency and reduce memory consumption,
we will develop theapproximatemethod for online frequent
episode mining based on the currentexactsolution.
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